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Abstract 

The Koecher construction of simple symmetric Lie algebras is used to realize colineation 
and conformal Lie algebras of non-linear transformations of a pseudo-orthogonal vector 
space in the canonical Weyl algebras, which are used in the SchrSdinger representation. 
The realization maps the linear sub-algebras onto symmetrized polynomials of second 
degree, whereas the non-linear parts are mapped onto polynomials of first and third 
degree. For the two examples the Meyberg Jordan algebras are explicitly given. 

1. Introduction 

Lie algebras are of  great practical use for the construction of  spectra of  
dynamical systems in quantum mechanics, if they are realized as invariance 
Lie algebras in the associative algebra of  observables. But even if not all 
elements commute with the Hamiltonian, in certain cases the Lie algebra 
can be used as a non-invariance Lie algebra for the determination of  the 
spectrum. Thus the embedding of  a given Lie algebra into the algebra of  
observables is of  general interest. 

In the present article we study embeddings into the Weyl algebra, which 
is the polynomial algebra generated by the position and momentum 
operators of  quantum mechanics. The explicit calculations are done in 
the SchrSdinger representation, which is known to be the only irreducible 
one up to equivalence of  the Weyl algebra with a finite number o fp  and q's. 

The Lie algebras to be studied are the colineation and conformal Lie 
algebras as examples of  a class of  simple Lie algebras, namely those which 
admit a symmetric decomposition (Section 2). In physics they are realized 
by non-linear transformations of  a (in general pseudo-) orthogonal vector 
space, cf. equation (6.2), which is the Euclidean three-dimensional space 
in the case of  colineations or the Minkowski space. These non-linear 
realizations originate in the use of  the corresponding groups in geometry 
and kinematics, for instance the special colineations 

x 

C.(x)  = 1 + (a, x )  
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in geometrical optics and the special conformal transformations 

x+(x,x>a 
K.(x) = 

1 +2<x, a> + <a, a><x, x> 

in electrodynamies. Therefore, the underlying spaces of the non-linear 
realizations have a physical meaning whereas the vector spaces of the self 
representations---equations (2.12) and (2.13), i.e. the smallest faithful 
representation spaces--have none. 

It is shown that the symmetric decomposition corresponds to a decom- 
position of the Lie algebras of transformations according to their degree of 
homogeneity (zero, one or two). The decomposition gives rise to a - 2  
graduation which can be found in certain subspaces of the Weyl algebra 
as well, if one decomposes it into spaces of symmetrized polynomials of 
equal degree. Although the whole Weyl algebra carries no such Lie gradu- 
ation, it can be found in the spaces of first, second and third degree, if one 
considers only abelian subspaces of first and third degree. For the explicit 
construction of a graduation preserving realization the method of pairings 
by M. Koecher is used. 

In a certain sense the above construction is a generalization of the 
embedding into polynomials of second degree. Since they contain a Lie 
algebra which is isomorphic to the general linear algebra, the theorem of 
Ado allows such a 'linear' realization for all Lie algebras. However, to 
realize simple symmetric Lie algebras in that way one has to introduce 
unphysical p and q's, since the self-representation spaces have more 
dimensions than the non-linear realization spaces. Thus the minimalizing 
corresponds to the dropping of the linearity requirement, but depends on a 
symmetric decomposition. 

Notation. We write ab - ba = [a, b]_ = ad(a)b and 2[a, b]+ = ab + ba in 
associative algebras. Bilinear forms are assumed to be non-degenerate. 

2. Symmetric Decomposition of  Simple Lie Algebras 

Given a finite dimensional simple Lie algebra L# over •, the direct vector 
space decomposition 

&o = s I @ s @ -L~'a (2.1)  

is called symmetric (Koecher, 1969a, p. 59, 1969b, p. 389) if 

(S.1)  [-LPl, -L#a] = -L#2 

(S.2) [-L'e2, -L'et] c -L#l 

(s.3) [~1,  ~ d  = {0} 

(S.4) there is an involutive automorphism 0 of LP with ,gLPt = LPa 
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An immediate consequence of the definition is 

[5e2, L:2] c L:2 

(using the Jakobi identity) and 

[SG, Y'a] c ~3 ,  

05ca = ~a ,  

Obviously, s = Go 2 @ (s 1 @ Goa) is 

381 

(2.2) 

[Ga3, Gaa] = {0} (2.3) 

~s c ~2  (2.4) 

a Cartan decomposition of 5r 
(Loos, 1969, p. 145). The decomposition (2.1) is a special case of 

.LP = ,.~,,_1 @ ,L.e,, @ .Lav+~, v = 0 , 1 , 2  . . . .  (2.5) 

[Net, L, ok] c 5r i, k = v - 1, v, v + 1 (2.6) 

for v = 2. Here 5r = ~v+2 = {0}. Koecher uses v = 1. Kobayashi & 
Nagano (1964) have given a complete classification of symmetric decom- 
positions of real simple Lie algebras, where they use v = 0. In the following 
for the embedding into the Weyl algebra, v = 2 is used because the latter 
allows such a - 2  Lie graduation on certain subspaces. 

For a @ M -@ Ob ~ s176 1 @ ~C-~2 @ ~-c~a we define transformations sd( ): 
Gaa -+ G~ by 

sd (a) (c) = a (2.7) 

sd(M) (c)= [M, c] (2.8) 

sd(Oa)(c) = �89 c], c] (2.9) 

i.e. in general notation 

sd (Ga,) (Gal) . !-1!i , ad (Gal) '-I  G a, (2.10) 
t t - U. 

The transformations sd(Sei) are homogeneous of degree i -  1. Continuing 
these transformations linearly, the definition 

{sd(d), sd(B)} = sd([A, B]), A, B E s (2.11) 

makes the vector space of  these transformations a Lie algebra which is 
isomorphic to s 

Let us give two matrix examples. For a pseudo-orthogonal vector space 

(V, ( , ) )  we denote the matrix of  ( , )  in some basis of V b y / ,  by cr the 
. . -)  

column of a e V and by cd the corresponding row. For a, b ~ V and 
G e gl(V, •) the decomposition 

(: :)�9 ( tr ce  ~ ~176 (2.12) 
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of sl(• �9 V, R) is symmetric with the involutive automorphism 
OG = - G  t, G e sl(~ Q V, ~). 

The second example is given by the pseudo-orthogonal Lie algebra 
der(17, % ~) on 17 := R | V @ R, i.e. the set of n + 2-dimensional square 
matrices with -~.X~, y:~ + -~7, -4y:b = 0, ~, 37 ~ 17, where the (symmetric, 
invertible) matrix [ of ~, ~- is given by diag(1, I, -1). In matrix form the 
defining condition for .~ is .~ar+ [ .~= 0. Then the decomposition of 
der (17, % ~-) 

~t[ y 0 f l t l  

(2.13) 

with y ~ R and M e  der(V, <, )), is symmetric with the involutive auto- 
morphism 0 X = - I - ~ X t  I, where I := diag (1, I, 1). 

The corresponding Lie algebras of transformations are the well-known 
Lie algebras of infinitesimal colineations and infinitesimal conformal 
transformations respectively. 

The mapping (a, b) ~+ a [] b := ad([a, 0b])J~, is apairing o f ~ , ,  i.e. the 
mapping m : ~ l  x La 1 -+ end (Lal) satisfies 

(P.1) the trace form traee(a [] b + b [] a) is non-degenerate 

(V.2) (a [] b) e = (e [] b) a 
(P.3) the adjoint (a [] b) + of a [] b with respect to the trace form is b [] a 

(P.4) [M, a D b ] = M a [ ] b - a D M + b  for M s  ~ 2  

Here (P.4) shows that ~ i  [] La~ generates the Lie algebra Se 2. Conversely, 
every such pairing on a vector space V gives rise to a symmetric Lie algebra 
V @ ~-" O V, where ~ c end(V) (Koecher, 1969a, Section II3). 

The trace forms for the two matrix examples are -2(n + 1)<a, b> and 
-2n<a, b>. 

3. The Schr6dinger Representation of the Canonical Commutation Relations 

Let ~'(V) be some space of real or complex valued functions on V such 
that f o r f ~  ~'(V) the functions S(a*)fand S(a)f, given by 

[S(a*) f ]  (c) = (a, c> f(e)  (3.1) 
a, eE V 

[S(a) f ]  (c) = A~ f (c) (3.2) 

(Segal, 1968, p. 148), are in ~ ( V )  again. Here a* s V*, i.e. a w-> a* is the 
isomorphism of V onto its dual space V* given by a*(c) = {a, c), and 
Ac a is the directional derivative in the direction of a. If  [, ]_ denotes the 



SYMMETRIC LIE ALGEBRAS 383 

commutator, then an easy verification gives the canonical commutation 
relations 

[S(a �9 b*), S(e Q d*)]_ = ((a, d) - (e, b)) idr (3.3) 

In the following we write a = S(a) and a*=  S(a*). Obviously, V | V*, 
when equipped with the skew symmetric non-degenerate bilinear form on 
the right-hand side of (3.3)--which we write a~ i s  a symplectic vector 
space, and V | V* generates a representation of the canonical Weyl 
algebra (Dixmier, 1968; Doebner & Melsheimer, 1968; Nouaze & Revoy, 
1970; Tilgner, 1970, 1971). A short description of the Weyl algebra is given 
below. 

The definition (a, b ) =  (a, b) transports the bilinear forms to V, V* 
and V @ V*. 

4. The Weyl Algebra of  a Symplectie Vector Space 

Let us start from an arbitrary symplectic vector space (E, o-) of dimension 
2n with non-degenerate bilinear form a. Given the associative tensor 
algebra ten(E) over E, we denote by | its multiplication, by It its identity 
element, and by ((a(x, y) It - x @ y + y | x)) the two-sided ideal spanned 
by all elements of the form X @ (G(x, y) 1, - x | y + y | x) | Y for 
x, y ~ E c ten(E) and X, Y~ ten(E). The associative algebra 

weyl(E, ~r)=ten(E)/((~r(x, y) l t -  x | y + y | x)) (4.1) 

is called Weyl algebra over (E, ~). If lw denotes its identity, 

x y - y x = a ( x , y ) l w ,  x , y ~ E ~  weyl(E, rr) (4.2) 

cf. (3.3). The Weyl algebra is an infinite dimensional, central simple algebra 
(Nouaze & Revoy, 1970). 

A basis of the Weyl algebra is given by lw and the symmetrized mono- 
mials of the basis elements of E (cf. Tilgner, 1970, 1971). Let A W~ be the 

2n +i i - 1)_dimensiona 1 vector space spanned by all symmetrized mono- 

mials of degree i. Then for all choices of the xk ~ E c weyl (E, rr) 

1 
Axl (4.3) 

(V~ is the permutation group of i objects) is in A W~ and 

weyl(E, o-) = O AW~ (4.4) 

with A Wo = RI~, A W1 = E. For xk ~ E one proves by induction 

/Xx~ . . . . .  x~ = [ . . .  [x~,x~]+. . . ]+,  x~]+ (4.5) 

Hence the vector space AWl is spanned by the i times iterated anti- 
commutators of elements of E. An analogous statement holds for the 
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Clifford algebra over a pseudo-orthogonal vector space (Jacobson, 1961, 
p. 231). One proves 

[A W,+a, E ] _ =  AW, (4.6) 

[AW2, AW,]_ = AW, (4.7) 

However, these relations cannot be generalized to a - 2  Lie graduation of 
the Lie algebra weyl(E, o-) because of 

[AW3, AW3]_ = AW, @ [~I,~ (4.8) 

For the proof of this statement one calculates 

[Axlx2xa, AylyzYa]- = A[xlxzxa, YaY2Y3]- @ oJlw (4.9) 

where co is a complicated sum of products of the a(x, Yk). 
Equations (4.2), (4.6), (4.7) and (4.8) show that a realization 

5r @ ~q~ @ s -+ E @ A W2 @ A Wa preserves the - 2  Lie graduation if 
s resp. ~3  are mapped into abelian subspaces of Eresp. A W3. 

5. The Schrrdinger Realization of Symmetric Lie Algebras 

For the realization of the colineation and conformal Lie algebras as 
polynomials in the a and a*, we use the Koecher construction of symmetric 
Lie algebras given by Koecher (1969a, Section II3, 1969b). The polynomials 

ga(a, b) = -[a, b*]+ (5.1) 

o~(a, b) = a * b  - b* a = -o~(b ,  a) (5.2)  

are in AW2 with ad(ga(a, b))lv ~ gl(V, •) and ad(oa(a, b))lv ~ der(V, <, )). 
Let d a be an element of weyl(E, a) with 

ad (d a) a = -a ,  ad (d a) a* = a* (5.3) 

i.e. the 2n • 2n matrix 

aa">"~ ( v 2.)  
is in the symplectic matrix Lie algebra. Since this Lie algebra is isomorphic 
to the Lie algebra A W2 (Tilgner, 1971) there is a unique element in A W2 
with (5.3), i.e. which is mapped by the isomorphism ad( )lv~ :v. : A W2 -+ 
sp(V @ V*, o-) into this matrix. If we drop the restriction to V @ V* we 
can add a multiple of lw to this element without affecting (5.3). 

The mappings (a, b) ~ a [] b, defined by 

a [] b = ad(-g~(a, b) + <a, b) d~)lv (5.4) 

a [] b = ad(oa(a, b) + <a, b> da)lv (5.5) 

are pairings of V. Next we have to look for polynomials Z(e) such that 
for every e ~ V 

ad( [a ,  Z(e)]_)lv = a [] e (5.6) 



SYMMETRIC LIE ALGEBRAS 385 

in both cases. For this note that there is--up to an additive multiple of  
lw--a unique polynomial qa with 

ad (qa) a = -2a*,  ad(q n) a* = 0 (5.7) 

since the 2n x 2n matrix 

is in sp(V @ V*, a) = der(V @ V*, a). For e ~ V define 

6Cc n = - [ d  n, c*]+ 

aKc n = [qL el+ - 2 [dL  e*]+ (5.8) 

using then the well-known identities 

[uv, w]_ = u[v, w ] _ +  [u, w]_ v 

[[u, v]+, w]_ = [[u, w]_, v]+ + [u, Iv, w]_]+ (5.9) 

which are valid in any associative algebra, one verifies the commutation 
relations 

[~c .  n, ac hi_ = [a, b]_ = 0 
[~5C, a, h]_ = -gn(a, b) + (a, b) d A 

[6Ca n, ga(c, d)]_ = 6Ca<., ~>, (5.10) 

[a, ga(b, c)]_ = - ( a ,  c )b  
[gn(b, a), ga(d, c)]_ = (a, d)ga(b, c) - (b, c)ga(d, a) 

In the second case the commutation relations are 

[6Ka n, 6Kb n]_ = [a, b]_ = [d n, on(a, b)]_ = 0 

[6K,, n, b]_ = 2{on(a, b) + {a, b)  d a} 
[6K., d n ] _ = - 6 K ,  n 

[aK~ n, on(b, 6 ] -  = <a, b)  aK~ n - (a, c) aK~ a 
[a, on(b, c)]_ = <a, b) c - (a, c) b 

[on(b, a), on(d, c)]_ = (a, c) on(d, b) + (b, d) oa(c, a) 

- (a, d)  on(e, b) - (b, c) on(d, a) (5.11) 

together with the first equation (5.3). The last equations in (5.10) and (5.11) 
are the well-known commutation relations of  the Lie algebras gl(V, R) 
and der(V, ( , ) ) ,  whereas the second equations show that the elements 
(5.8) have the required property (5.6) of  Z(e). Equations (5.10) and (5.11) 
show that the vector spaces 

V @ linear span ofgn(V, V) @ 6Cv n 
V @ linear span of  on(V, V) + Rd a @ 6Kv n (5.12) 

are Lie algebras, which due to their construction by pairings are symmetric 
in these decompositions. A verification shows for the matrices (2.12) and 
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(2.13) the same commutation relations. Thus we have for every choice of  
d n and qa, according to (5.3) and (5.7), the colineation and conformal Lie 
algebras, realized in weyl(E, ~r) in a symmetric decomposition. 

This construction of  an embedding of  a symmetric Lie algebra Le into 
the Weyl algebra can be applied to any symmetric Lie algebra. The difficult 
question to find a realization of  the subspace Lea by polynomials of  third 
order is then reduced to two easy steps: (i) realize the induced pairing of  
Lel on V c E, and (ii) find Z(e) with (5.6). The resulting commutation 
relations then clearly are those of  Le. 

6. Non-linear Transformations of  E Defined by the Weyl Algebra 

Given Y ~ A W,.+I and x, y ~ E c weyl(E, a), we define 

wd(lw) (x) = x ,  wd(y)  (x) = y  

1 [Y, x] . . . .  ]_ (m times) (6.1) w d  ( r ' )  (x)  = m [ ' '" 

Continuating this linearly, it follows from (4.6) that the map x ~+ wd (Y) (x) 
of  E into itself (for any Y) is homogeneous of  degree m for m ~> 0 and of  
degree 1 if m = -1  ; thus only the transformations wd (1 w) and wd (A W2) = 
ad (A W2)[E are linear. 

To remove the arbitrariness in the definition o f d  n and qa let us demand 
that the transformations wd(Y),  with Yin the colineation resp. conformal 
Lie algebra, when restricted to V coincide with the sd (Y) for the symmetric 
realization (5.12). Then from (6.1), d ~ and qa must be in AW2, i.e. totally 
symmetrized, because if one would add a multiple of  ida,(v), then 6Ca a 
and 6Ka "~ would have an additive term in E, resulting in a zero homogeneous 
part in the corresponding transformation sd(Z(e)). The transformations 
become explicitly 

sd (a) (e) = a, sd (d a) (e) = - e  

sd(gA(a, b)) (e) = <b, c ) a  
sd(od(a, b)) (e) = <b, c ) a  - <a, c>b 

sd (6C~ a) (e) = -<a,  e) e 

sd (6K, a) (e) = <c, e> a - 2<a, c) e (6.2) 

From (4.5) it is clear that the elements (5.8) can be written in the totally 
symmetrized form 

6Cc a = -Ae* d a 

6Kc a = A(eq a - 2c* d a) (6.3) 

Thus we have a graduation preserving embedding 

V �9 [V, Z(V)]_ | Z(V) c E | A W2 G A W3 (6.4) 

of  both Lie algebras. Using the relation 

Axyz  = xyz  - �89 y ) z  - or(z, x ) y  + a(y, z )x )  (6.5) 
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for x, y, z ~ E c weyl(E, a), one can drop the symmetrization A in (6.3), 
introducing instead an additive term of V. If one introduces a basispl, .... pn 
in V such that the matrix of ( , )  becomes diag(1,..., 1, -1 ,  .... -1), then 

n .  
da = 7kzqkp I +~tda~v), qa = 7kzqkql 

6C~ = -q,  Yk, qk P' - �89 + 1)q, (6.6) 

6K ~ = ~kz qk q~ P~ - 2q~ 7kl qk pl _ nq~ 

where qx,..., q, is the induced basis of V* and ~k the Kronecker symbol 
of ( , )  (summation convention !). This form of d a, 6C~ and 6Kgt differs 
from the usual form of the generators, calculated by the Lie-Cartan tech- 
nique, by the last terms, which have thus found a quantum mechanical 
interpretation. 6K~ and d n were used in this form already in the theory of 
relativistic field equations by Flato et aL (1970, p. 86). 

The transformations wd resp. their restrictions sd to V give a non-linear 
realization of the subspaces ~ and La3 of a symmetric Lie algebra ~e. 
sd(Laa) clearly are the infinitesimal translations on V. These non-linear 
realizations, together with those of the corresponding groups (given for 
the special colineations and conformal transformations in the introduction), 
will be discussed elsewhere for the two examples. It remains to find the 
non-linear group realizations for other symmetric Lie algebras of 
Kobayashi and Nagano and to discuss their physical implications. 

7. Related Algebraic Structures 

We add some remarks on a class of algebraic structures, associated with 
symmetric decompositions. 

The pair of vector spaces (V, Z(V)) is a Meyberg pair (Meyberg, 1970, 
p. 61) for the Lie algebras [V,Z(V)]_resp.A~ and the mapping 
S: V • ZfV) ---> ad([V, Z(V)]_), S: (a, Z(e)) ~ ad([a, Z(e)]_); i.e. (i) V 
and Z(V) are faithful representation spaces of the Lie algebras IV, Z(V)]_ 
with respect to ad, (ii) S fulfills the condition (2.2) of Meyberg, and (iii) S 
generates [V, Z(V)]_. 

To every Meyberg pair there is a class of Jordan algebras with the 
multiplication �89 Z(e)]_, b]_, which in the two examples is 

{a, b}~ = (a, c) b + (b, c) a 
{a, b}c = (a ,  c )  b + (b, e )  a - (a ,  b)  e 

respectively. The second Jordan algebra is known in physics in a slightly 
modified form: If (e, e) ~ 0, then (e, e) -1 e is the identity element. Choose 
V = Vo Q Be such that the direct sum is orthogonal with respect to ( , )  
and (e, e ) =  1. For b = bo @ fie, c = Co Q 3'e, the second Jordan com- 
position is 

{bo Q/~e, Co �9 ]~e}e = tiC0 + ~bo (~  (1~]~ - -  (bo,  C0) ) e 
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and this is the Jordan algebra which generates the Clifford algebra on 
(Vo, ( , ) ) .  I f  b is invertible, then b -1 = (/~2 + (bo, bo))-~(-bo �9 pe), 
i.e. b is invertible iff (b, b)  ~ 0. Thus every element outside the light cone 
is invertible. The set of  invertible elements of  a Jordan algebra is a sym- 
metric space with the multiplication of  Loos (1969, p. 68), which becomes 
here 

1 
a. b = 2{(a, b)  a - (a,  a )  b} 

(b, b)  

The connectivity component  which contains e is the interior of  the forward 
light cone, which is a symmetric space itself. The mass shells, defined by 
(a,  a )  = constant, are symmetric subspaces. 
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